Ataxia-telangiectasia-mutated (ATM) and NBS1-dependent phosphorylation of Chk1 on Ser-317 in response to ionizing radiation.

نویسندگان

  • Magtouf Gatei
  • Katie Sloper
  • Claus Sorensen
  • Randi Syljuäsen
  • Jacob Falck
  • Karen Hobson
  • Kienan Savage
  • Jiri Lukas
  • Bin-Bing Zhou
  • Jiri Bartek
  • Kum Kum Khanna
چکیده

In mammals, the ATM (ataxia-telangiectasia-mutated) and ATR (ATM and Rad3-related) protein kinases function as critical regulators of the cellular DNA damage response. The checkpoint functions of ATR and ATM are mediated, in part, by a pair of checkpoint effector kinases termed Chk1 and Chk2. In mammalian cells, evidence has been presented that Chk1 is devoted to the ATR signaling pathway and is modified by ATR in response to replication inhibition and UV-induced damage, whereas Chk2 functions primarily through ATM in response to ionizing radiation (IR), suggesting that Chk2 and Chk1 might have evolved to channel the DNA damage signal from ATM and ATR, respectively. We demonstrate here that the ATR-Chk1 and ATM-Chk2 pathways are not parallel branches of the DNA damage response pathway but instead show a high degree of cross-talk and connectivity. ATM does in fact signal to Chk1 in response to IR. Phosphorylation of Chk1 on Ser-317 in response to IR is ATM-dependent. We also show that functional NBS1 is required for phosphorylation of Chk1, indicating that NBS1 might facilitate the access of Chk1 to ATM at the sites of DNA damage. Abrogation of Chk1 expression by RNA interference resulted in defects in IR-induced S and G(2)/M phase checkpoints; however, the overexpression of phosphorylation site mutant (S317A, S345A or S317A/S345A double mutant) Chk1 failed to interfere with these checkpoints. Surprisingly, the kinase-dead Chk1 (D130A) also failed to abrogate the S and G(2) checkpoint through any obvious dominant negative effect toward endogenous Chk1. Therefore, further studies will be required to assess the contribution made by phosphorylation events to Chk1 regulation. Overall, the data presented in the study challenge the model in which Chk1 only functions downstream from ATR and indicate that ATM does signal to Chk1. In addition, this study also demonstrates that Chk1 is essential for IR-induced inhibition of DNA synthesis and the G(2)/M checkpoint.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ATR-dependent phosphorylation and activation of ATM in response to UV treatment or replication fork stalling.

The phosphatidyl inositol 3-kinase-like kinases (PIKKs), ataxia-telangiectasia mutated (ATM) and ATM- and Rad3-related (ATR) regulate parallel damage response signalling pathways. ATM is reported to be activated by DNA double-strand breaks (DSBs), whereas ATR is recruited to single-stranded regions of DNA. Although the two pathways were considered to function independently, recent studies have ...

متن کامل

Hypoxia-induced phosphorylation of Chk2 in an ataxia telangiectasia mutated-dependent manner.

Chk2 is a serine/threonine kinase that signals to cell cycle arrest, DNA repair, and apoptotic pathways following DNA damage. It is activated by phosphorylation in response to ionizing radiation, UV light, stalled replication forks, and other types of DNA damage. Hypoxia is a common feature of solid tumors and has been shown to affect the regulation of many genes, including several DNA repair f...

متن کامل

Distinct functions of Nijmegen breakage syndrome in ataxia telangiectasia mutated-dependent responses to DNA damage.

Phosphorylation of NBS1, the product of the gene mutated in Nijmegen breakage syndrome (NBS), by ataxia telangiectasia mutated (ATM), the product of the gene mutated in ataxia telangiectasia, is required for activation of the S phase checkpoint in response to ionizing radiation (IR). However, NBS1 is also thought to play additional roles in the cellular response to DNA damage. To clarify these ...

متن کامل

Nbs1 is required for ATR-dependent phosphorylation events.

Nijmegen breakage syndrome (NBS) is characterised by microcephaly, developmental delay, characteristic facial features, immunodeficiency and radiosensitivity. Nbs1, the protein defective in NBS, functions in ataxia telangiectasia mutated protein (ATM)-dependent signalling likely facilitating ATM phosphorylation events. While NBS shares overlapping characteristics with ataxia telangiectasia, it ...

متن کامل

ATM is required for the cellular response to thymidine induced replication fork stress.

Genetically distinct checkpoints, activated as a consequence of either DNA replication arrest or ionizing radiation-induced DNA damage, integrate DNA repair responses into the cell cycle programme. The ataxia-telangiectasia mutated (ATM) protein kinase blocks cell cycle progression in response to DNA double strand breaks, whereas the related ATR is important in maintaining the integrity of the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 278 17  شماره 

صفحات  -

تاریخ انتشار 2003